Authors: Annica Isacsson, Mirva Hyypiä, Minna-Maari Harmaala and Elias Goulart.
Haaga-Helia School of Vocational Teacher education is coordinating a BEAM-funded Tekes project, Scalable Mobile Learning Services for Global Markets (SCALA), which aims at researching and localizing Finnish digital learning solutions for the Brazilian market. The SCALA project is executed jointly with Lappeenranta University of Technology, three Finnish companies SMEs, and a Brazilian partner from the Municipal University of Sae Caetano do Sul. All of the Finnish companies’ learning solutions have been tested in Brazil, developed further in Finland and piloted in Brazil. The virtual learning environment, however, proved to be difficult to test and pilot without a meaningful content. Hence, a joint Finnish /Brazilian waste management learning module was co-created between a Finnish business college and three Brazilian upper secondary institutes for the purpose of piloting. This article elaborates on the pedagogical need for a virtual environment, the need for waste management content, and the need for a mutual learning module including both Finnish and Brazilian students.
The need for new learning in a virtual flexible environment
Mattila et al. (2013) argue that there are pedagogical needs to develop socio-technically engaging learning environments. According to Mattila and Silander (2015, 2) inclusive virtual 3D learning and educational environments enable ubiquitous learning and distance education that enrich projects and enable boundary-crossing learning.
Furthermore, Mattila and Silander (2015, 2) state that the strength of technology is in supporting social interaction and making it possible to see, experience and learn things that would not otherwise be possible in education. Such environments make it possible to conduct interesting joint modules between countries. Imagine yourself as a teacher in the middle of a classroom, wishing that you could change the learning environment simply by clicking your fingers, in order to better demonstrate the issue to be learned. In a virtual environment, this is already possible, i.e. the learning situation can be changed very quickly from a rainforest into a desert and further into the pyramids of Egypt or space (Mattila 2015, 116). A virtual learning environment supports formal teaching, but it also enables informal and non-formal ways of interaction and learning. In a virtual environment you can learn with peer learners from anywhere in the world.
In 3D learning environments such as in Finpeda, FSV users can customize their avatars to look exactly how they want. Generally, an avatar is the embodiment of a person or idea. However, in the computer world, an avatar specifically refers to a character that represents an online user. Avatars are commonly used in multiplayer gaming, online communities, and Web forums (Avatar n.d.). Avatars make it possible to try out different roles, such as gender or nationality. In addition to roles, simulations and role playing games can also be arranged in environments that suit different themes.
The need for sustainability
Students at Haaga-Helia were involved in the SCALA project by doing a PESTEL analysis for the benefit of the project. A PESTEL analysis is a framework or tool used by marketers to analyze and monitor the macro-environmental (external marketing environment) factors that have an impact on an organization. PESTEL stands for political, economic, social, technological, environmental and legal (Professional Academy n.d.).
The students produced a report (Sorokins et al. 2017) on the Brazilian market. One of the conclusions in their analysis was that the Brazilian Government considers environmental education as one of the important factors that has significantly influenced the development of the country. Therefore, creating contents related to environmental education could be a strategy for Finpeda to enter the local market. However, as the Brazilian Ministry of Environment has already conducted several courses for environmental e-learning courses, perhaps SCALA/Finpeda should focus on content and learning environments that can bring added-values to the existing ones.
Inspired by Haaga-Helia students’ findings and experts in Brazil waste management, educational content was integrated into the Finpeda 3D virtual FSV environment. The course content has been produced by a Haaga-Helia Principal lecturer responsible for teaching and enhancing knowledge related to sustainable development. The course content consists of four themes and topics, of which specifically waste management will be dealt with during the joint module. The description of content can be found below.
Table 1. Waste Management course content
Topic | Content | Objectives |
---|---|---|
Recycling and reuse of waste | The recycling business (recycling centers, second-hand shops) | Recognize the significance of recycling and reuse |
The possibilities for reuse | Identify the business potential of recycling and reuse | |
Producer responsibility | Describe the principle and operation of producer responsibility | |
Utilization of waste as material and energy | Industrial utilization of waste | List the material and energy utilization potential of different types of waste |
Utilization of construction and demolition waste | Describe the waste management and sorting process | |
Utilization of organic waste | Explain the basic principles of waste material recovery and utilization | |
Utilization of recycled fuels | List examples of commonly used waste utilization methods | |
Utilization of waste in energy production | ||
Production of new goods using recycled materials | ||
Final disposal of waste | Final disposal sites: principles, structures and operating procedures | Describe the structures and operating procedures of final disposal sites |
The future of final disposal sites | Explain the order of priority of waste and the place of final disposal in it | |
Estimate the future importance of final disposal | ||
Present ways of reducing the need for the final disposal of waste | ||
From waste to resources | Future prospects in the world | Recognize the value of waste as a resource |
Utilization of landfill waste (landfill mining) | Recognize the growth and significance of the waste management business in the future | |
End-of-waste success stories | Recognize the need for new innovations |
The pilot survey
The empirical data used in this article come from a wider research and development based SCALA project (September 2016–April 2018). The three Finnish case companies are small and medium-sized organizations operating nationally and internationally in the online learning business. Viope provides learning solutions for mathematics, Promentor for language skills and Finpeda for the virtual environment.
The upcoming Finpeda pilot involves a Finnish vocational business school and sixteen students, as well as three Brazilian upper secondary institutes with six students per school. Each school will design their own avatar. The implementation of the joint learning module is planned to take place during six weeks in February–March 2018, and the plan is to arrange six FSV video conferences, one each week. One avatar per group from different schools will participate in the weekly meetings.
The pilot involves a survey phase, during which the Finnish and Brazilian students get acquainted both with the learning environment and the Waste Management content. In the next phase, the students observe their daily waste management practices, and compare and document them through pictures, audiovisual and written material. The third phase contains sharing of findings and demonstrations in the Finpeda FSV Waste Management space.
Due to the results of the pilot study last year (2017) in Brazil, significant challenges for the upcoming pilot are recognized. First, most online learning systems require continuous Internet access, which is not available in Brazil as readily as it is in Finland. In addition, the infrastructure of Brazilian school buildings is not designed for mobile learning devices. For example, the possibility of recharging their batteries is not always guaranteed; there is a shortage of sockets in the classrooms. Furthermore, the virtual learning environment is not optimized for smartphone use. Most students use their own smartphones as availability of tablets or laptops in different schools are rather limited. It was also noted that a Portuguese language option is needed in the initial learning solutions and in the manuals. Video-based instructions for different solutions were highly recommended. Moreover, the pedagogical skills and educational systems differ between Finland and Brazil; for example, in the Nordic region, problem-based learning methods or self-directed group work is commonly used in various disciplines and at many levels of education whereas in Brazil a more teacher-oriented approach is more common.
The SCALA pilot study is interested in researching how waste management and mobile learning, as well as collaboration in the virtual environment take place between Brazilian and Finnish education. Additionally, the information and experiences of users are of crucial importance in order to develop the virtual learning environment further, as well as for the benefit of approaching the emerging markets.
Discussion
To test and pilot a joint Waste Management course implemented in a digital 3D environment within the SCALA project, is a brilliant idea, and a challenging venture. The idea of integrating Finnish and Brazilian students for learning and interacting in a virtual environment through waste management content is a globally important. The challenges are related to a five hour difference in time, different learning cultures, mobile accessibility and connections.
The pilot implementation has just started, so we cannot say much about the results at this state, other than the fact that everybody seems very eager and enthousiastic to be part of the project. Both in Brazil and Finland both teachers and students are motivated, and find not only the theme and topic to be important, but also the co-learning and global dimension of the pilot.
Authors
Annica Isacsson, Ph.D. (Econ.), Research Manager, Haaga-Helia University of Applied Sciences, annica.isacsson(at)haaga-helia.fi
Mirva Hyypiä, D.Sc. (Tech.), Senior Researcher, Lappeenranta University of Technology, LUT Lahti, mirva.hyypia(at)lut.fi
Minna-Maari Harmaala, Ph.D. (Econ.), Principal lecturer, Haaga-Helia ammattikorkeakoulu, minna-maari.harmaala(at)haaga-helia.fi
Elias Goulart, Ph.D. (Tech..), Professor, Municipal University of Sae Caetano do Sul, elias.goulart(at)uscs.edu.br
[vc_tta_accordion active_section=”0″ no_fill=”true” el_class=”lahteet”][vc_tta_section title=”References” tab_id=”1458134585005-b3f22396-5506″]
Avatar (n.d.). Retrieved on 15 March 2018 from https://techterms.com/definition/avatar
Mattila, P. (2015). New educational technology. In Mattila, P. & Silander P. (eds). How to create the School of the Future – revolutionary thinking and design from Finland, 113-122. Retrieved 16 March 2018 from http://nebula.wsimg.com/57b76261c219f5e7083e9978cd2cd66d?AccessKeyId=3209BE92A5393B603C75
Mattila, P., Arhippainen, L., & Ryymin, T. (2013). Towards Innovative and User-Friendly Future Learning Spaces. 2013. Teacher Education Policy in Europe Conference, 16–18 May 2013, Helsinki, Finland.
Mattila, P., Silander, P., (2015). Introduction. In Mattila, P. & Silander P. (eds). How to create the School of the Future – revolutionary thinking and design from Finland, 1–2. Retrieved 16 March 2018 from http://nebula.wsimg.com/57b76261c219f5e7083e9978cd2cd66d?AccessKeyId=3209BE92A5393B603C75
Professional Academy (n.d.). Marketing Theories – PESTEL Analysis. Retrieved 15 March 2018 from https://www.professionalacademy.com/blogs-and-advice/marketing-theories—pestel-analysis
Soronkis, A., Huynh, A., Ten, D., & Barbosa, R. (2017). Scalable Mobile Learning Services for Global Markets. Haaga-Helia Degree Programme in International Business student report.
[/vc_tta_section][/vc_tta_accordion]